Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 342: 140145, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37714485

RESUMEN

The presence of persistent organic compounds in water has become a worldwide issue due to its resistance to natural degradation, inducing its environmental resilience. Therefore, the accumulation in water bodies, soils, and humans produces toxic effects. Also, low levels of organic pollutants can lead to serious human health issues, such as cancer, chronic diseases, thyroid complications, immune system suppression, etc. Therefore, developing efficient and economically viable remediation strategies motivates researchers to delve into novel domains within material science. Moreover, finding approaches to detect pollutants in drinking water systems is vital for safeguarding water safety and security. Covalent organic frameworks (COFs) are valuable materials constructed through strong covalent interactions between blocked monomers. These materials have tremendous potential in removing and detecting persistent organic pollutants due to their high adsorption capacity, large surface area, tunable porosity, porous structure, and recyclability. This review discusses various synthesis routes for constructing non-functionalized and functionalized COFs and their application in the remediation and electrochemical sensing of persistent organic compounds from contaminated water sources. The development of COF-based materials has some major challenges that need to be addressed for their suitability in the industrial configuration. This review also aims to highlight the importance of COFs in the environmental remediation application with detailed scrutiny of their challenges and outcomes in the current research scenario.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Estructuras Metalorgánicas , Humanos , Adsorción , Agua
2.
Chemosphere ; 338: 139503, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37453522

RESUMEN

Sulfur dioxide (SO2) gas at trace levels challenges the consumption of fuel gases and cleaning of flue gases originating from diverse anthropogenic sources. We have demonstrated Zn-Al layered double hydroxide (LDH) and layered double oxide (LDO) as low-cost and effective adsorbents in removing lowly concentrated SO2 gas at room temperature. Water in the adsorbent bed significantly improved the performance, where the maximum adsorption capacity of 38.0 mg g-1 was achieved for LDO. Based on the spectroscopic findings, the adsorbed gas molecules were oxidized to surface-bound sulfate/bisulfate species, showing complete mineralization of SO2 molecules. By employing an inexpensive NaOH-H2O2 solution-based regeneration strategy, we successfully regenerated the spent LDO, significantly restoring its gas uptake capacity. The regenerated oxide exhibited an increased gas uptake capacity ranging from 38.0 to 98.5 mg g-1, highlighting the practicality and economic feasibility of our approach. LDH/LDO materials are promising regenerable adsorbents for removing low concentrations of SO2 gas in ambient conditions.


Asunto(s)
Aluminio , Dióxido de Azufre , Dióxido de Azufre/química , Aluminio/química , Óxidos , Hidróxido de Aluminio , Zinc , Temperatura , Peróxido de Hidrógeno , Hidróxidos , Ácidos , Adsorción
3.
Sci Rep ; 13(1): 2330, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759698

RESUMEN

In this study, we have demonstrated the application of sodium manganese oxide for the chemisorption of toxic acidic gases at room temperature. The fabricated alkali ceramic has Na0.4MnO2, Na2Mn3O7, and NaxMnO2 phases with a surface area of 2.6 m2 g-1. Na-Mn oxide was studied for oxidation of H2S, SO2, and NO2 gases in the concentration range of 100-500 ppm. The material exhibited a high uptake capacity of 7.13, 0.75, and 0.53 mmol g-1 for H2S, SO2, and NO2 in wet conditions, respectively. The material was reusable when regenerated simply by soaking the spent oxide in a NaOH-H2O2 solution. While the H2S chemisorption process was accompanied by sulfide, sulfur, and sulfate formation, the SO2 chemisorption process yielded only sulfate ions. The NO2 chemisorption process was accomplished by its conversion to nitrite and nitrate ions. Thus, the present work is one of the first reports on alkali ceramic utilization for room-temperature mineralization of acidic gases.

4.
Environ Technol ; : 1-14, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36263910

RESUMEN

In this study, inverse spinel cubic ferrites MFe2O4 (M = Fe2+, and Co2+) have been fabricated for the high-capacity adsorptive removal of Hg(II) ions. The PXRD analysis confirmed ferrites with the presence of residual NaCl. The surface area of Fe3O4 (Fe-F) and CoFe2O4 (Co-F) material was 69.1 and 45.2 m2 g-1, respectively. The Co-F and Fe-F showed the maximum Hg(II) adsorption capacity of 459 and 436 mg g-1 at pH 6. The kinetic and isotherms models suggested a spontaneous adsorption process involving chemical forces over the ferrite adsorbents. The Hg(II) adsorption process, probed by X-ray photoelectron spectroscopy (XPS), confirmed the interaction of Hg(II) ions with the surface hydroxyl groups via a complexation mechanism instead of proton exchange at pH 6 with the involvement of chloride ions. Thus, this study demonstrates a viable and cost-effective solution for the efficient remediation of Hg ions from wastewater using non-functionalized ferrite adsorbents. This study also systematically investigates the kinetics and isotherm mechanism of Hg(II) adsorption onto ferrites and reports one of the highest Hg(II) adsorption capacities among other ferrite-based adsorbents.

5.
ACS Omega ; 7(42): 37774-37781, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36312367

RESUMEN

Phase pure Na0.4MnO2 microrods crystallized in the orthorhombic symmetry were fabricated for the wet oxidation of H2S and SO2 gases at room temperature. The material was found highly effective for the mineralization of low concentrations of acidic gases. The material was fully regenerable after soaking in a basic H2O2 solution.

6.
Inorg Chem ; 61(38): 15037-15044, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36083270

RESUMEN

The environmentally benign metal-organic framework (MOF) CUK-1 based on 2,4-pyridine dicarboxylate has been prepared for the first time using Mn(II) as the inorganic node and water as the only solvent. Mn-CUK-1 shows reversible and efficient capture of H2O, SO2, and H2S. Compared to previously studied Co(II) and Mg(II) versions of the same MOF, Mn-CUK-1 also exhibited unique temperature-induced structural flexibility due to organic linker torsion, as detailed by variable-temperature single-crystal X-ray diffraction studies. Owing to this inherent solid-state flexibility, Mn-CUK-1 showed stepwise adsorption for polar gases, which induce structural deformations upon adsorption, while the nonpolar guest adsorbates were reversibly sorbed in a more classical manner. Notably, Mn-CUK-1 demonstrates the highest reported H2S capacity-to-surface area ratio among MOFs that are chemically stable toward this reactive acidic molecule. Moreover, Mn-CUK-1 displays exceptional structural stability in the presence of high relative humidity and corrosive gases and shows soft crystalline behavior triggered by changes in both the adsorption temperature and guest molecule identity.

7.
Sci Rep ; 12(1): 15387, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100623

RESUMEN

A ternary Mn-Zn-Fe oxide nanocomposite was fabricated by a one-step coprecipitation method for the remotion of H2S and SO2 gases at room temperature. The nanocomposite has ZnO, MnO2, and ferrites with a surface area of 21.03 m2 g-1. The adsorbent was effective in mineralizing acidic sulfurous gases better in wet conditions. The material exhibited a maximum H2S and SO2 removal capacity of 1.31 and 0.49 mmol g-1, respectively, in the optimized experimental conditions. The spectroscopic analyses confirmed the formation of sulfide, sulfur, and sulfite as the mineralized products of H2S. Additionally, the nanocomposite could convert SO2 to sulfate as the sole oxidation by-product. The oxidation of these toxic gases was driven by the dissolution and dissociation of gas molecules in surface adsorbed water, followed by the redox behaviour of transition metal ions in the presence of molecular oxygen and water. Thus, the study presented a potential nanocomposite adsorbent for deep desulfurization applications.

8.
Sci Rep ; 12(1): 15388, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100662

RESUMEN

A bivalent Cu(I,II) metal-organic framework (MOF) based on the 4,4',4″-s-Triazine-2,4,6-triyl-tribenzoate linker was synthesized via a solvothermal method. The MOF possessed 43.8% of the Cu sites as Cu+ with a surface area of 1257 m2 g-1. The detailed spectroscopic analysis confirmed dimethylformamide (DMF) solvent as the reductant responsible for Cu+ sites in the synthesized MOF. The Cu+ sites were easily accessible and prone to oxidation in hot water or acidic gas environment. The MOF showed water-induced structural change, which could be partially recovered after soaking in DMF solvent. The synthesized MOF showed a high hydrogen sulfide (H2S) uptake capacity of 4.3 mmol g-1 at 298 K and an extremely low H2S pressure of 0.0005 bar. The adsorption capacity was the highest among Cu-based MOFs with PCN-6-M being regenerable, which made it useful for deep desulfurization applications. The adsorbed H2S was mineralized to sulfide, sulfur, and sulfates, mediated by the Cu+/Cu2+ redox cycle in the presence of adsorbed water and molecular oxygen. Thus, the study confirmed that DMF as a reductant is responsible for the origin of bivalency in PCN-6-M and possibly in other Cu-based MOFs reported in the literature. Also, the developed MOF could be a potential candidate for flue gas desulfurization and gas purification applications.

9.
Chem Commun (Camb) ; 58(78): 10886-10895, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36093914

RESUMEN

Gold nanoparticles (AuNPs) present unique physicochemical characteristics, low cytotoxicity, chemical stability, size/morphology tunability, surface functionalization capability, and optical properties which can be exploited for detection applications (colorimetry, surface-enhanced Raman scattering, and photoluminescence). The current challenge for AuNPs is incorporating these properties in developing more sensible and selective sensing methods and multifunctional platforms capable of controlled and precise drug or gene delivery. This review briefly highlights the recent progress of AuNPs in biomedicine as bio-sensors and targeted nano vehicles.


Asunto(s)
Oro , Nanopartículas del Metal , Colorimetría , Oro/química , Nanopartículas del Metal/química , Preparaciones Farmacéuticas , Espectrometría Raman
10.
Materials (Basel) ; 15(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35454498

RESUMEN

Bimetallic solutions play a vital role in the growth and functionality of copper trimesate (Cu-BTC) metal-organic frameworks (MOFs). The effect of Ag+, Ca2+, Mn2+, Co2+, and Zn2+ on the growth of Cu-BTC was studied by fabricating M-Cu-BTC MOFs at room temperature using bimetallic M-Cu solutions. While Ag+ in the MOF had a rod-like morphology and surface properties, divalent cations deteriorated it. Moreover, unconventional Cu+ presence in the MOF formed a new building unit, which was confirmed in all the MOFs. Apart from Ag and Mn, no other MOF showed any presence of secondary cations in the structure. While Ag-Cu-BTC showed an improved H2S uptake capacity, other M-Cu-BTC MOFs had superior organic pollutant adsorption behavior. Thus, we have demonstrated that the physicochemical properties of Cu-BTC could be modified by growing it in bimetallic solutions.

11.
Chem Commun (Camb) ; 58(26): 4116-4131, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35285465

RESUMEN

Scandium(III) ions can form robust metal-organic frameworks (MOFs) with relative ease of synthesis. However, their use in MOF construction remains scarce compared to the vast collection of MOFs using other ions. This highlight features the chronological development of Sc(III)-MOFs, which attest to the ability of Sc(III) ions to afford materials that combine exceptional stability with catalytic or photo-physical attributes.


Asunto(s)
Estructuras Metalorgánicas , Catálisis , Iones
12.
Luminescence ; 37(6): 876-882, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35305059

RESUMEN

A comparative study of interaction between chicken egg white lysozyme (Lyz) with two hexavalent chromate ions; chromate and dichromate; which are prevalently known for their toxicity, was investigated using different spectroscopic techniques along with a molecular docking study. Both steady-state and time-resolved studies revealed that the addition of chromate/dichromate is responsible for strong quenching of intrinsic fluorescence in Lyz and the quenching is caused by both static and dynamic quenching mechanisms. Different binding and thermodynamic parameters were also calculated at different temperatures from the intrinsic fluorescence of Lyz. The conformational change in Lyz and thermodynamic parameters obtained during the course of interaction with chromate/dichromate were well-supported by the molecular docking results.


Asunto(s)
Cromatos , Muramidasa , Sitios de Unión , Dicroismo Circular , Simulación del Acoplamiento Molecular , Muramidasa/química , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica
13.
Chempluschem ; 87(6): e202200006, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35194971

RESUMEN

Capture, storage and subsequent controlled release or transformation of sulfur dioxide (SO2 ) in mild conditions is still a challenge in the material science field. Recent advances in the use of porous materials have demonstrated good SO2 capture, particularly in metal-organic frameworks (MOFs), metal-organic cages (MOCs), and porous organic cages (POCs). The striking feature of these porous materials is the high SO2 uptake capacity in reversible settings. A partially fluorinated MIL-101(Cr) is stand-alone material with the highest SO2 uptake in chemically stable MOFs. Likewise, metal-free adsorbents like POCs exhibits a reversible SO2 uptake behavior. The SO2 adsorption characteristics of these three structurally and functionally unique adsorbent systems are highly dependent on the binding sites and mode of binding of SO2 molecules. This Review has highlighted the preferential binding sites in these materials to give a full perspective on the field. We anticipate that it will offer valuable information on the progress made towards improving SO2 capture by hybrid systems.

14.
Chemosphere ; 287(Pt 3): 132232, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34562706

RESUMEN

An attempt was made to understand the sorption behaviour of UO22+, Th4+ and Eu3+ on novel hybrid metal-organic framework composites, FeBDC@CoBDC. The XRD pattern revealed the composite nature of the hybrid MOF materials, while FTIR and Raman spectroscopic analyses evidenced the presence of different functional moieties. The thermal stability of the hybrid MOF composites was investigated through thermogravimetric analysis. The sorption predominantly followed Langmuir isotherm with sorption capacity of 189 mg g-1, 224 mg g-1 and 205 mg g-1 for UO22+, Th4+ and Eu3+ respectively. The sorption proceeded through chemisorption following pseudo 2nd order rate kinetics. The processes were found to be thermodynamically favourable and endothermic in nature. However, they were entropically driven. Multiple contacts of complexing agents were necessary for quantitative elution of f-elements from loaded MOF. The MOF showed moderate stability towards radiation exposure. DFT calculation was used for the optimization of structures, estimation of bond length and estimation of binding energy. In hybrid MOF composites, the Fe atom was having six coordination with 4 O atoms of BDC moieties and 2 O atoms of -OH groups. The O atoms of BDC and -OH groups were coordinated to Eu, Th and U atoms during their sorption.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Flúor , Cinética
15.
Chemosphere ; 291(Pt 2): 132836, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34762880

RESUMEN

This work reported the fabrication of NaMxOy-type adsorbents from air calcination of (Na, M)-trimesate metal-organic frameworks. NaMnxOy (NMO) crystallized as disc-shaped microsheets, whereas NaCoxOy (NCO) crystallized as smooth microsheets with surface deposition of polyhedral nanoparticles. The oxides have a surface area of 1.90-2.56 m2 g-1. The synthesized adsorbents were studied for low-temperature SO2 removal in breakthrough studies. The maximum adsorption capacity of 46.8 mg g-1 was recorded for NMO at 70 °C. The adsorption capacity increased with the increasing temperature due to the chemisorptive nature of the adsorption process. The capacity increased with the increasing bed loading and decreasing flow rate due to the improved SO2 retention time. The elemental mapping confirmed the uniform distribution of sulfur species over the oxide surface. X-ray diffraction showed the absence of metal sulfate nanoparticles in the SO2-exposed samples. The X-ray photoelectron analysis confirmed the formation of surface sulfate and bisulfate. The formation of oxidized sulfur species was mediated by hydroxyl groups over NMO and lattice oxygen over NCO. Thus, the work demonstrated here is the first such report on the use of NaMxOy-type materials for SO2 mineralization.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Óxidos , Azufre , Temperatura
16.
ACS Omega ; 6(39): 25631-25641, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34632219

RESUMEN

MOF-199 is one of the well-studied metal-organic frameworks (MOFs) for the capture of small gas molecules. In this study, we have investigated the thermal transformation of MOF-199 microrods to CuO nanoparticles by various microscopic and spectroscopic techniques. The growth of oxide was initiated by the formation of ∼2.5 nm particles at 200 °C, which ended up as CuO nanoparticles of ∼100-250 nm size at 550 °C. An intermediate presence of Cu2O along with CuO was recorded at 280 °C. The MOF and calcined products were tested for the room-temperature desulfurization process. MOF-199 showed the maximum adsorption capacity for H2S gas (77.1 mg g-1) among all adsorbents studied. Also, MOF-199 showed a better regeneration efficiency than the derived oxide. For a sustainable process, the exhausted adsorbents were used for the photocatalytic degradation of methylene blue. The exhausted materials showed better degradation efficiencies than the fresh materials. This study reports new sustainable approaches for MOF-199 application in air and water decontamination.

17.
Sci Rep ; 11(1): 14740, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282220

RESUMEN

Novel NaCoxOy adsorbents were fabricated by air calcination of (Na,Co)-organic frameworks at 700 °C. The NaCoxOy crystallized as hexagonal microsheets of 100-200 nm thickness with the presence of some polyhedral nanocrystals. The surface area was in the range of 1.15-1.90 m2 g-1. X-ray photoelectron spectroscopy (XPS) analysis confirmed Co2+ and Co3+ sites in MOFs, which were preserved in NaCoxOy. The synthesized adsorbents were studied for room-temperature H2S removal in both dry and moist conditions. NaCoxOy adsorbents were found ~ 80 times better than the MOF precursors. The maximum adsorption capacity of 168.2 mg g-1 was recorded for a 500 ppm H2S concentration flowing at a rate of 0.1 L min-1. The adsorption capacity decreased in the moist condition due to the competitive nature of water molecules for the H2S-binding sites. The PXRD analysis predicted Co3S4, CoSO4, Co3O4, and Co(OH)2 in the H2S-exposed sample. The XPS analysis confirmed the formation of sulfide, sulfur, and sulfate as the products of H2S oxidation at room temperature. The work reported here is the first study on the use of NaCoxOy type materials for H2S remediation.

18.
Chemosphere ; 274: 129789, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33545597

RESUMEN

Zn-MOF/ZnO nanocomposites with different organic linkers were fabricated by a rapid ultrasonication method using freshly prepared Zn(OH)2 precipitate. The high metal-to-ligand ratio led to the simultaneous formation of MOFs and ZnO nanoparticles in the MOFs. The surface area was in the range of 12-21 m2 g-1. The nanocomposites were tested for H2S adsorption at room temperature, where the maximum adsorption capacity of 14.2 mg g-1 was recorded for ZnBTC/ZnO in dry conditions. The spent adsorbents were regenerated using methanol and UV irradiation as individual and combined strategies. The successive effect of methanol and UV radiation led to an increased adsorption capacity in the second cycle. The spectroscopic investigation of spent ZnBDC/ZnO confirmed the chemisorption of H2S over Zn-sites via Zn2+-S2- interaction. The XPS analysis of regenerated ZnBDC/ZnO confirmed a decreased sulfur content and decreased Zn ionic character. The regeneration work in this study is one of the first attempts and could be extrapolated to well-studied Zn-MOFs like MOF-5 for the desulfurization process.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Adsorción , Temperatura , Zinc
19.
RSC Adv ; 11(15): 8951-8962, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35423377

RESUMEN

We report a rapid synthesis for the fabrication of terephthalate and trimesate metal-organic frameworks (MOFs) of Mn, Co, and Ni by ultrasonication of organic linkers with freshly prepared metal hydroxides. The MOFs were characterized by various microscopic and spectroscopic techniques to understand their structural, functional, and optical properties. MOFs with low bandgap energy (1.88-2.73 eV) showed strong absorbance in the UV-visible range. MOFs were exposed to UV irradiation for 40 h to understand their photostability. The MOFs showed decreased surface area and porosity with CoBTC as an exception. PXRD was less convincing for exploring functional changes in the UV-irradiated MOFs. XPS predicted changes in the oxidation states of metal nodes, the degradation of the organic linkers, and decarboxylation process in many of the transition MOFs. The study predicted terephthalate-based MOFs as more photostable than corresponding trimesate-based MOFs. This study is one of the first attempts in exploring photostability of MOFs with Mn, Co, and Ni as nodes.

20.
RSC Adv ; 11(9): 4890-4900, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35424450

RESUMEN

Three copper-based metal-organic frameworks (MOFs) with different organic linkers were synthesized for the removal of H2S gas at room temperature. The synthesized MOFs were characterized by microscopic and spectroscopic techniques to understand their structural, functional, and optical properties. The H2S adsorption capacity of MOFs calculated by column studies followed the trend: 105.6 mg g-1 (CuBDC) > 27.1 mg g-1 (CuBTC) > 1.3 mg g-1 (CuBDC-N) in dry conditions. The adsorption capacity increased in moist conditions due to an easy dissolution and dissociation of H2S in a film of water. X-ray photoelectron spectroscopy confirmed the presence of sulfur bound to Cu-sites and sulfate ions. The spent MOFs were regenerated by the successive effect of methanol and low power UV-C radiation. The regenerated CuBTC showed an exceptionally high adsorption capacity of 95.6 mg g-1 in the second cycle, which was linked to the reactivation of Cu-sites and improved surface area and porosity. The regeneration process developed in this study is a cost-effective method to recycle chemisorbed MOFs without compromising with their structural and functional integrity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...